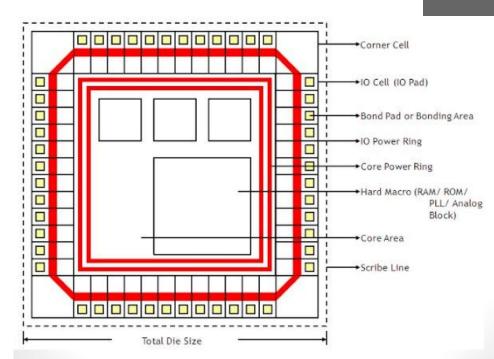

# CPE 470 - Openlane Continued



# **EDA Design Flows**

- Last time we got through
  - Linting
  - Synthesis
  - Post Synthesis STA
- Today we will finish
  - O PNR
    - CTS
  - Post PNR STA
  - o DRC
  - LVS



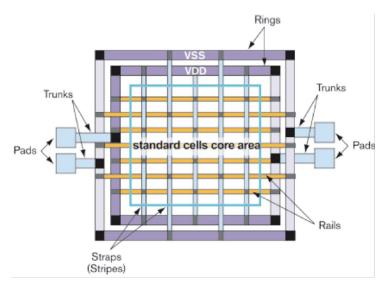

# **Floorplanning**

- Floorplanning decides generally how big chip is and where things go
  - Macros placed manually
  - Standard cell locations estimated
- Core Utilization (FP\_CORE\_UTIL)
  - Averages 50-60%
  - → Higher utilization → greater logic density, more gates
    - Might fail in routing
  - Lower utilization → less gates, but easier to route
- Floorplan sizing types (FP\_SIZING)
  - Absolute: chip has set dimensions
    - Die area will be set to:
    - "x0 y0 x1 y1"
  - **Relative**: chip will scale to size of logic

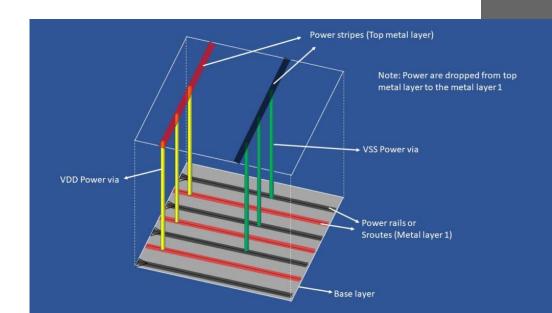
#### **Glossary**

**Macros:** pre-laid-out circuits to use as a component in a design. Often memory, IP, or analog circuitry

**Core Utilization:** percentage of area used for logic versus kept empty for routing

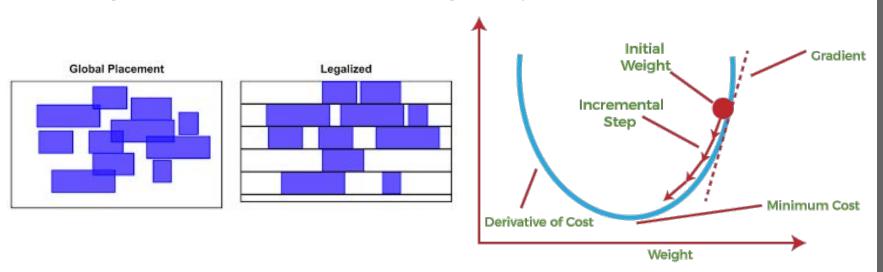



### **Power Connections**


**Glossary** 

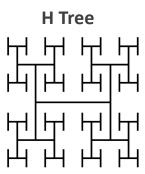
**PDN:** Power Distribution Network

- Every standard cell needs power
  - PDN used to globally route power
- Standard Cells exist in rows between Power and Ground rails
- Localized Power Rails are fed by global straps (stripes)



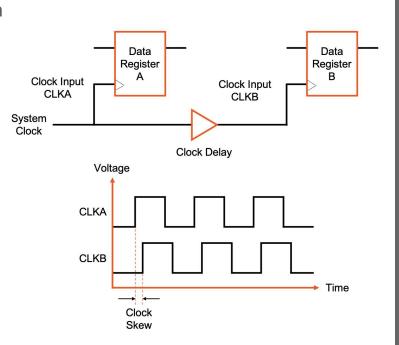

This figure show the complete power planning.




### **Placement**

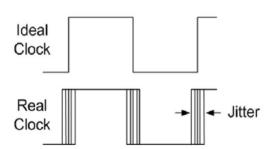
- Tools must place every standard cell, intelligently
  - Start with semi-random placement
  - Use wire length and/or delay as a cost function
    - Involved logic gates should end up close together
  - Optimize by swapping or moving gates
    - Similar to gradient descent in AI: find local minimums
  - Can change number of iterations to further (or over) optimize
- Legalization: move standard cells from general positions into strict rows

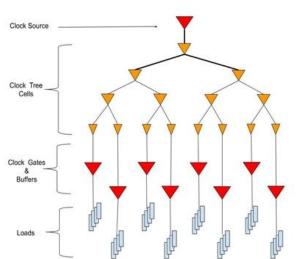



# **Clock Tree Synthesis - Skew**

- Important that clock signals globally arrive at the same time
  - Difference in arrival times is clock skew
- Clock Skew makes all timing violations worse
  - Clock arrives early → risk Setup Violation
  - Clock arrives late → risk Hold Violation
- Use specialized structures to distribute clock signal
  - H Trees -> fractals
  - Same propagation delay to every endpoint




#### **Glossary**


CTS: Clock Tree Synthesis Clock Skew: difference in clock signal arrival time between points



# **Clock Tree Synthesis - Jitter**

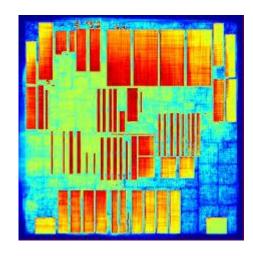
- Clock Cells → specialized standard cells that maximize consistency
  - Try not to introduce Clock Jitter
- Clock Tree
  - Create H tree that reaches every single clocked endpoint
- Clock Mesh
  - Global scale clock tree drives local scale meshes
  - Slightly worse skew but easier routing





#### **Glossary**

**Clock Jitter:** inconsistencies in the edge placement of a clock over time




# Routing

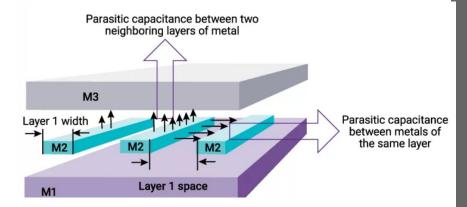
#### **Glossary**

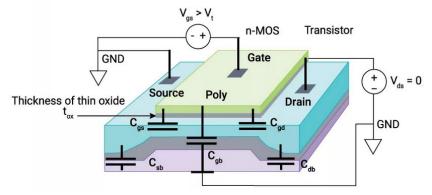
**Congestion:** ratio of how much available routing space is being used

- Modern chips are wire limited, not logic limited
  - Can fit all the gates we want
  - Wiring them up becomes much harder
- Routing: uses metal layers and vias to connect gates as needed
- Directionality:
  - Generally each layer has a preferred direction
  - IE. metal2 is horizontal, metal3 is vertical
- Run into congestion issues in dense areas
  - $\circ$  100% congestion  $\rightarrow$  no more wires in an area
  - Turn down core utilization
  - Refactor global signals



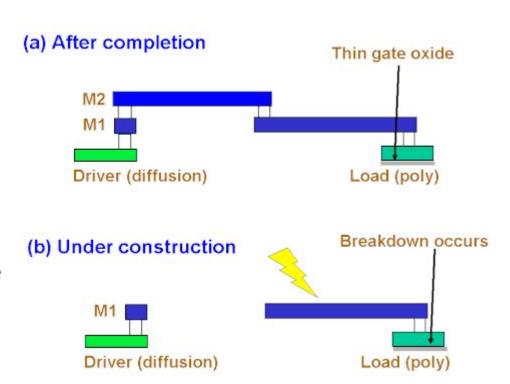
**Congestion Heatmap:** Visualizes areas with many interconnects, where wire space is all used up


### **RC Extraction for STA**


- Extract Resistance and Capacitance values of each cell and wire using PEX
  - Analyze wire and gate area, length
  - Calculate parasitics
- Use extracted values to more accurately model delay
- Re-run **STA** using higher-accuracy model
  - Previously, modeled cells and wires with less accurate delay estimates
  - Now takes account for all gate sizes and wire lengths
- Well Laid-Out Chip
  - Timing might improve
- Long Global Wires
  - Timing worse than estimated

#### **Glossary**

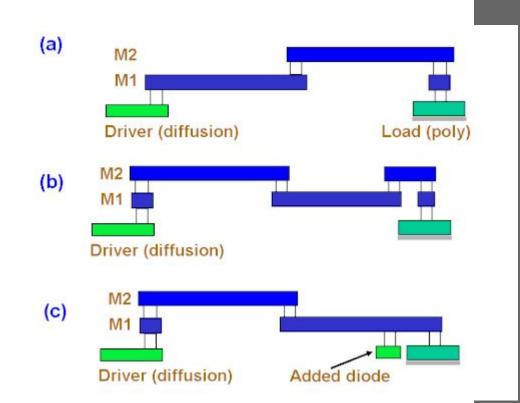
**PEX**: Parasitic Extraction **Parasitics:** unintended resistance,


capacitance, etc. inherent to physical design





# **Antennae Checking**

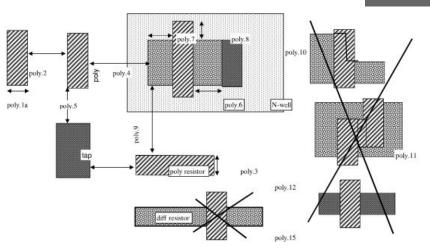

- Not Noise Related!
- Risk of damage during manufacturing of long wires
  - "plasma induced gate oxide damage"
- Metal layers are etched with plasma → Large Static Charges
- Transistor gates are sensitive to high voltage
  - Will spark and destroy gate
- Means long wires can physically break your design



### **Antennae Solutions**

To fix this, tell the tools to keep trying with GRT\_ANTENNA\_ITERS

- a. Change routing layers
  - Try not using lowest metal layer near gates
- b. Add vias near gates
  - Prevent charge buildup
- c. Diode Insertion
  - Insert protective diodes near sensitive gates to provide alternate static discharge path




#### **Glossary**

**DRC**: Design Rule Checking

### **DRC**

- Ensures manufacturability
- Enforces rules set by the PDK about what is allowed for each layer
- Most computationally intensive
  - Needs to calculate geometry of thousands to millions of shapes across hundreds of layers
  - Can take hours
- Can skip while in early stages of design
  - openlane --skip magic.drc--skip klayout.drc ...
  - Do not skip for a final design!!



#### **Glossary**

**SPICE**: Simulation Program with Integrated Circuit Emphasis, electrical simulation language used in LTSpice, NGSpice, etc.

### **SPICE Extraction**

- Use geometry of wires and gates to assemble an electrical netlist (a SPICE model)
  - Metal layers connected by vias become single nets
- Assemble transistor-level or gate-level electrical model of system
  - Can do electrical simulation of small scale systems
  - Extremely computationally intensive and slow, much worse than logic simulation



# **Layout Versus Schematic**

### LVS compares the electrical SPICE netlist of the final circuit with the expected synthesized

- Should match if the tools did their job
  - Doesn't match? LVS Error
- Common Issues with LVS:

logical netlist

- Power / Ground rails not properly connected
- inout used at the top level
  - Top level should generally not be bidirectional

#### **Glossary**

**LVS**: Layout Versus Schematic



### **Sources**

- https://digitalsystemdesign.in/placement-and-routing-for-asic/
- <a href="https://physicaldesign-asic.blogspot.com/2020/06/floorplanning.html">https://physicaldesign-asic.blogspot.com/2020/06/floorplanning.html</a>
- https://www.semiconductor-digest.com/clock-tree-optimization-methodol ogies-for-power-and-latency-reduction/
- <a href="https://www.synopsys.com/glossary/what-is-parasitic-extraction.html">https://www.synopsys.com/glossary/what-is-parasitic-extraction.html</a>